Influence of ipragliflosin on cardiac electrical activity in patients with type 2 diabetes mellitus and arterial hypertension
Abstract. Over the past decade, sodium-glucose cotransporter-2 inhibitors have demonstrated clinical benefits in the treatment of cardiovascular diseases.Druk I.V., Safronova S.S., Kanunnikova O.I., Zhamalov L.M.
The aim: to evaluate the effect of ipragliflozin at cardiac electrical activity in patients with type 2 diabetes mellitus (T2DM) and arterial hypertension (AH).
Material and methods. A prospective cohort study was performed at the basis of the Department of internal medicine and family medicine, Omsk State Medical University of the Ministry of Healthcare of Russia and Clinical Cardiology Dispensary. Thirty patients with T2DM and arterial hypertension participated in the study: 14 male and 16 female individuals (mean age 54.0 [50.0; 60.0] years). They took ipragliflozin at a dose of 50 mg once daily for 12 weeks. All participants underwent comprehensive laboratory and instrumental examinations, including echocardiography and , Holter electrocardiogram monitoring, at baseline and after 12 weeks.
Results. Baseline clinical status of patients with T2DM, AH, and left ventricular diastolic dysfunction was characterized by complaints of rapid heart rate in every second case, insufficient reduction of heart rate in nighttime, rigid circadian index, episodes of sinus tachycardia, supraventricular and ventricular extrasystoles, decreased R-R variability, increased activity of sympathetic nervous system. After 12 weeks of ipragliflozin therapy, positive subjective dynamics was observed, associated with a reduction in the number of recorded episodes of supraventricular and ventricular extrasystoles.
Conclusion. Obtained study data indicate that ipragliflozin has a positive effect on cardiac electrical activity in patients with T2DM and AH without atherosclerotic cardiovascular diseases.
Keywords
References
1. Jhuo SJ, Lin TH, Lin YH, Tsai WC, Liu IH, Wu BN et al. Clinical observation of SGLT2 inhibitor therapy for cardiac arrhythmia and related cardiovascular disease in diabetic patients with controlled hypertension. J Pers Med. 2022;12(2):271.
PMID: 35207759. PMCID: PMC8880188. https://doi.org/10.3390/jpm12020271
2. Fernandes GC, Fernandes A, Cardoso R, Penalver J, Knijnik L, Mitrani RD et al. Association of SGLT2 inhibitors with arrhythmias and sudden cardiac death in patients with type 2 diabetes or heart failure: A meta-analysis of 34 randomized controlled trials. Heart Rhythm. 2021;18(7):1098–105.
PMID: 33757845. https://doi.org/10.1016/j.hrthm.2021.03.028
3. Ong HT, Teo YH, Teo YN, Syn NL, Wee CF, Leong S et al. Effects of sodium/glucose cotransporter inhibitors on atrial fibrillation and stroke: A meta-analysis. J Stroke Cerebrovasc Dis. 2022;31(1):106159.
PMID: 34689051. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.106159
4. Okunrintemi V, Mishriky BM, Powell JR, Cummings DM. Sodium-glucose co-transporter-2 inhibitors and atrial fibrillation in the cardiovascular and renal outcome trials. Diabetes Obes Metab. 2021;23(1):276–80.
PMID: 33001548. https://doi.org/10.1111/dom.14211
5. Li J, Yu Y, Sun Y, Yu B, Tan X, Wang B et al. SGLT2 inhibition, circulating metabolites, and atrial fibrillation: A Mendelian randomization study. Cardiovasc Diabetol. 2023;22(1):278.
PMID: 37848934. PMCID: PMC10583416. https://doi.org/10.1186/s12933-023-02019-8
6. Li WJ, Chen XQ, Xu LL, Li YQ, Luo BH. SGLT2 inhibitors and atrial fibrillation in type 2 diabetes: A systematic review with meta-analysis of 16 randomized controlled trials. Cardiovasc Diabetol. 2020;19(1):130.
PMID: 32847602. PMCID: PMC7448518. https://doi.org/10.1186/s12933-020-01105-5
7. Wang M, Zhang Y, Wang Z, Liu D, Mao S, Liang B. The effectiveness of SGLT2 inhibitor in the incidence of atrial fibrillation/atrial flutter in patients with type 2 diabetes mellitus/heart failure: A systematic review and meta-analysis. J Thorac Disease. 2022;14(5):1620–37.
PMID: 35693625. PMCID: PMC9186250. https://doi.org/10.21037/jtd-22-550
8. Cesaro A, Gragnano F, Paolisso P, Bergamaschi L, Gallinoro E, Sardu C et al. In-hospital arrhythmic burden reduction in diabetic patients with acute myocardial infarction treated with SGLT2-inhibitors: Insights from the SGLT2-I AMI PROTECT study. Front Cardiovasc Med. 2022;9:1012220.
PMID: 36237914. PMCID: PMC9551177. https://doi.org/10.3389/fcvm.2022.1012220
9. Fawzy AM, Rivera-Caravaca JM, Underhill P, Fauchier L, Lip GYH. Incident heart failure, arrhythmias and cardiovascular outcomes with sodium-glucose cotransporter 2 (SGLT2) inhibitor use in patients with diabetes: Insights from a global federated electronic medical record database. Diabetes Obes Metab. 2023;25(2):602–10.
PMID: 36054168. PMCID: PMC10087187. https://doi.org/10.1111/dom.14854
10. Jaiswal V, Ang SP, Kumar D, Deb N, Jaiswal A, Joshi A et al. Sodium-glucose cotransporter-2 inhibitors and arrhythmias: A meta-analysis of 38 randomized controlled trials. JACC Adv. 2025;4(3):101615.
PMID: 39985887. PMCID: PMC11904486. https://doi.org/10.1016/j.jacadv.2025.101615
11. Zou HT, Yang GH, Cai YJ, Chen H, Zheng XQ, Hu R. Are high- or low-dose SGLT2 inhibitors associated with cardiovascular and respiratory adverse events? A meta-analysis. J Cardiovasc Pharmacol. 2022;79(5):655–62.
PMID: 35058411. https://doi.org/10.1097/FJC.0000000000001222
12. Wu VC, Chiu KP, Wang CL, Hsu CY, Tu HT, Huang YT et al. Electrocardiographic changes associated with SGLT2 inhibitors and non-SGLT2 inhibitors: A multi-center retrospective study. Front Cardiovasc Med. 2022;9:934193.
PMID: 36148062. PMCID: PMC9485575. https://doi.org/10.3389/fcvm.2022.934193
13. Макаров Л.М., Комолятова В.Н., Куприянова О.О., Первова Е.В., Рябыкина Г.В., Соболев А.В. с соавт. Национальные российские рекомендации по применению методики холтеровского мониторирования в клинической практике. Российский кардиологический журнал. 2014;19(2):6–71. (Makarov LM, Komolyatova VN, Kupriyanova OO, Pervova EV, Ryabykina GV, Sobolev AV et al. National Russian guidelines on application of the methods of Holter monitoring in clinical practice. Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2014;19(2):6–71 (In Russ.)).
EDN: RXWMUZ. https://doi.org/10.15829/1560-4071-2014-2-6-71
14. Rawshani A, McGuire DK, Omerovic E, Sattar N, McMurray JJV, Smith U et al. Cardiac arrhythmias and conduction abnormalities in patients with type 2 diabetes. Sci Rep. 2023;13(1):1192.
PMID: 36681691. PMCID: PMC9867726. https://doi.org/10.1038/s41598-023-27941-5
15. Wang X, Zhang X, Zhang W, Li J, Weng W, Li Q. Association of sodium-glucose cotransporter 2 inhibitors (SGLT2i) with cardiac arrhythmias: A systematic review and meta-analysis of cardiovascular outcome trials. Rev Cardiovasc Med. 2023;24(9):258.
PMID: 39076384. PMCID: PMC11262450. https://doi.org/10.31083/j.rcm2409258
16. Matthews VB, Elliot RH, Rudnicka C, Hricova J, Herat L, Schlaich MP. Role of the sympathetic nervous system in regulation of the sodium glucose cotransporter 2. J Hypertens. 2017;35(10):2059–68.
PMID: 28598954. https://doi.org/10.1097/HJH.0000000000001434
17. Lopaschuk GD, Verma S. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors: A state-of-the-art review. JACC Basic Transl Sci. 2020;5(6):632–44.
PMID: 32613148. PMCID: PMC7315190. https://doi.org/10.1016/j.jacbts.2020.02.004
18. Бокерия Л.А., Бокерия О.Л., Волковская И.В. Вариабельность сердечного ритма: методы измерения, интерпретация, клиническое использование. Анналы аритмологии. 2009;6(4):21–32. (Bokeria LA, Bokeria OL, Volkovskaya IV. Heart rate variability: Methods of measurement, interpretation, clinical use. Annaly aritmologii = Annals of Arrhythmology. 2009;6(4):21–32 (In Russ.)). EDN: KYGRHZ.
19. Zelniker TA, Braunwald E. Cardiac and renal effects of sodium-glucose co-transporter 2 inhibitors in diabetes: JACC state-of-the-art review. J Am Coll Cardiol. 2018;72(15):1845–55.
PMID: 30075873. https://doi.org/10.1016/j.jacc.2018.06.040
20. Solini A, Giannini L, Seghieri M, Vitolo E, Taddei S, Ghiadoni L, Bruno RM. Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: A pilot study. Cardiovasc Diabetol. 2017;16(1):138.
PMID: 29061124. PMCID: PMC5654086. https://doi.org/10.1186/s12933-017-0621-8
21. Rastogi A, Januzzi JL Jr. Pleiotropic effects of sodium-glucose cotransporter-2 inhibitors in cardiovascular disease and chronic kidney disease. J Clin Med. 2023;12(8):2824.
PMID: 37109162. PMCID: PMC10143176. https://doi.org/10.3390/jcm12082824
22. Duan HY, Barajas-Martinez H, Antzelevitch C, Hu D. The potential anti-arrhythmic effect of SGLT2 inhibitors. Cardiovasc Diabetol. 2024;23(1):252.
PMID: 39010053. PMCID: PMC11251349. https://doi.org/10.1186/s12933-024-02312-0
23. Xu J, Hirai T, Koya D, Kitada M. Effects of SGLT2 inhibitors on atherosclerosis: Lessons from cardiovascular clinical outcomes in type 2 diabetic patients and basic researches. J Clin Med. 2021;11(1):137.
PMID: 35011882. PMCID: PMC8745121. https://doi.org/10.3390/jcm11010137
24. Liu Y, Shoji-Kawata S, Sumpter RM Jr, Wei Y, Ginet V, Zhang L et al. Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc Natl Acad Sci U S A. 2013;110(51):20364–71.
PMID: 24277826. PMCID: PMC3870705. https://doi.org/10.1073/pnas.1319661110
25. Verma S, McMurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: A state-of-the-art review. Diabetologia. 2018;61(10):2108–17.
PMID: 30132036. https://doi.org/10.1007/s00125-018-4670-7
26. Verma S, Garg A, Yan AT, Gupta AK, Al-Omran M, Sabongui A et al. Effect of empagliflozin on left ventricular mass and diastolic function in individuals with diabetes: An important clue to the EMPA-REG OUTCOME trial? Diabetes Care. 2016;39(12):e212–e213.
PMID: 27679584. https://doi.org/10.2337/dc16-1312
27. Chen HY, Huang JY, Siao WZ, Jong GP. The association between SGLT2 inhibitors and new-onset arrhythmias: A nationwide population-based longitudinal cohort study. Cardiovasc Diabetol. 2020;19(1):73.
PMID: 32503541. PMCID: PMC7275510. https://doi.org/10.1186/s12933-020-01048-x
28. Vrhovac I, Balen Eror D, Klessen D, Burger C, Breljak D, Kraus O et al. Localizations of Na(+)-D-glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart. Pflug Arch. 2015;467(9):1881–98.
PMID: 25304002. https://doi.org/10.1007/s00424-014-1619-7
29. Koepsell H. The Na+-D-glucose cotransporters SGLT1 and SGLT2 are targets for the treatment of diabetes and cancer. Pharmacol Ther. 2017;170:148–65.
PMID: 27773781. https://doi.org/10.1016/j.pharmthera.2016.10.017
30. Sauer J, Marksteiner J, Hohenegger M, Todt H, Kubista H, Dostal C et al. The sodium/glucose cotransporter 2 inhibitor empagliflozin is a pharmacological chaperone of cardiac Nav1.5 channels. Am J Physiol Heart Circ Physiol. 2025;329(3):H680–H695.
PMID: 40796268. PMCID: PMC7618122. https://doi.org/10.1152/ajpheart.00363.2025
31. Lunsonga LC, Fatehi M, Long W, Barr AJ, Gruber B, Chattopadhyay A et al. The sodium/glucose cotransporter 2 inhibitor Empagliflozin inhibits long QT 3 late sodium currents in a mutation specific manner. J Mol Cell Cardiol. 2025;198:99–111.
PMID: 39631445. https://doi.org/10.1016/j.yjmcc.2024.11.014
About the Authors
Inna V. Druk, MD, Dr. Sci. (Medicine), associate professor, head of the Department of internal medicine and family medicine, continuing professional education, Omsk State Medical University of the Ministry of Healthcare of Russia. Address: 644043, Omsk, 12 Lenina St.E-mail: drukinna@yandex.ru
ORCID: https://orcid.org/0000-0001-8317-7765
Svetlana S. Safronova, MD, assistant at the Department of internal medicine and family medicine, continuing professional education, Omsk State Medical University of the Ministry of Healthcare of Russia. Address: 644043, Omsk, 12 Lenina St.
E-mail: safronova.sv77@gmail.com
ORCID: https://orcid.org/0000-0001-5852-2782
Olesya I. Kanunnikova, MD, PhD (Medicine), associate professor of the Department of internal medicine and family medicine, continuing professional education, Omsk State Medical University of the Ministry of Healthcare of Russia. Address: 644043, Omsk, 12 Lenina St.
E-mail: lesia.tch@yandex.ru
ORCID: https://orcid.org/0009-0003-3721-4379
Linar M. Zhamalov, MD, physician-methodologist of the Department of organization of medical care monitoring of the Center for Organizational and Methodological Management and Analysis of the Quality of Medical Care in the Regions, assistant at the Department of public health and healthcare organization of the Institute of Professional Education and Accreditation, National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of Russia. Address: 101100, Moscow, 10/3 Petroverigsky Lane.
E-mail: l.m.zhamalov@mail.ru
ORCID: https://orcid.org/0000-0003-2349-9791



