ISSN 2412-4036 (print)
ISSN 2713-1823 (online)

Modern approaches to the diagnosis and treatment of sarcopenia in patients with chronic kidney disease

Gasanov M.Z., Batyushin M.M., Veber V.R., Chulkov V.S., Azovtseva O.V.

1) Yaroslav-the-Wise Novgorod State University, Veliky Novgorod; 2) Rostov State Medical University of the Ministry of Healthcare of Russia, Rostov-on-Don
Abstract. Sarcopenia is a progressive, generalized skeletal muscles disorder associated with an increased probability of adverse outcomes, including falls, fractures, physical disability, and mortality. Several studies have shown that patients with chronic kidney disease (CKD) have a high prevalence of this clinical condition, especially at the late stages of the disease. In this cohort of patients, sarcopenia is caused by accelerated protein catabolism, decreased anabolism, as well as the use of program hemodialysis and insufficient protein intake. Available literature data demonstrate a negative impact of sarcopenia at the prognosis of CKD, cardiovascular risk and life expectancy. The review aims to discuss the existing criteria for the diagnosis of sarcopenia, estimation of new potential biomarkers of muscle tissue metabolism disorders and analyze modern methods for the correction of sarcopenia in patients with CKD.

Keywords

sarcopenia
chronic kidney disease
apoptosis
autophagy
myostatin
interleukin 6
indoxyl sulfate

References

1. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 Clinical Practice Guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2024; 105(4S): S117–S314.

https://doi.org/10.1016/j.kint.2023.10.018. PMID: 38490803.

2. Jager K.J., Kovesdy C., Langham R. et al. A single number for advocacy and communication-worldwide more than 850 million individuals have kidney diseases. Kidney Int. 2019; 96(5): 1048–50.

https://doi.org/10.1016/j.kint.2019.07.012. PMID: 31582227.

3. Francis A., Harhay M.N., Ong A.C.M. et al.; American Society of Nephrology; European Renal Association; International Society of Nephrology Chronic kidney disease and the global public health agenda: An international consensus. Nat Rev Nephrol. 2024; 20(7): 473–85.

https://doi.org/10.1038/s41581-024-00820-6. PMID: 38570631.

4. Romagnani P., Agarwal R., Chan J.C.N. et al. Chronic kidney disease. Nat Rev Dis Primers. 2025; 11(1): 8.

https://doi.org/10.1038/s41572-024-00589-9. PMID: 39885176.

5. Муркамилов И.Т., Айтбаев К.А., Фомин В.В. Распространенность, возрастные и гендерные особенности хронической болезни почек у больных сахарным диабетом. Терапевтический архив. 2023; 95(6): 481–486. (Murkamilov I.T., Aitbaev K.A., Fomin V.V. Prevalence, age and gender features of chronic kidney disease in patients with diabetes mellitus. Terapevticheskiy arkhiv = Therapeutic Archive. 2023; 95(6): 481–486 (In Russ.)).

https://doi.org/10.26442/00403660.2023.06.202242. EDN: BDHIXY.

6. Wang K., Liu Q., Tang M. et al. Chronic kidney disease-induced muscle atrophy: Molecular mechanisms and promising therapies. Biochem Pharmacol. 2023; 208: 115407.

https://doi.org/10.1016/j.bcp.2022.115407. PMID: 36596414.

7. Борискина О.Л., Цыган В.Н., Румянцев А.Ш., Яковенко А.А. Роль конечных продуктов гликирования в развитии саркопении у пациентов с ХБП. Нефрология. 2023; 27(4): 43–51. (Boriskina O.L., Tsigan V.N., Rumyantsev A.Sh., Yakovenko A.A. The role of advanced glycation end products in sarcopenia in CKD patients. Nefrologiya = Nephrology. 2023; 27(4): 43–51 (In Russ.)).

https://doi.org/10.36485/1561-6274-2023-27-4-43-51. EDN: RHVXHH.

8. Cruz-Jentoft A.J., Bahat G., Bauer J. et al.; Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019; 48(1): 16–31.

https://doi.org/10.1093/ageing/afy169. PMID: 30312372. PMCID: PMC6322506.

9. Матасова Ю.А., Есина Е.Ю., Лагутина С.Н. с соавт. Оценка риска переломов, саркопении и качества жизни пациентов с хронической болезнью почек на амбулаторном этапе. Профилактическая медицина. 2024; 27(12): 88–91. (Matasova Yu.A., Esina E.Yu., Lagutina S.N. et al. Assessment of risk of developing fractures and sarcopenia and quality of life of patients with chronic kidney disease at the outpatient stage. Profilakticheskaya meditsina = Russian Journal of Preventive Medicine. 2024; 27(12): 88–91 (In Russ.)).

https://doi.org/10.17116/profmed20242712188. EDN: DQKEMV.

10. Wu G., Hu Q., Huang Z. et al. Sarcopenia and mild kidney dysfunction and risk of all-cause and cause-specific mortality in older adults. Nephrol Dial Transplant. 2024; 39(6): 989–99.

https://doi.org/10.1093/ndt/gfad243. PMID: 37952094.

11. Duarte M.P., Almeida L.S., Neri S.G.R. et al. Prevalence of sarcopenia in patients with chronic kidney disease: A global systematic review and meta-analysis. J Cachexia, Sarcopenia Muscle. 2024; 15(2): 501–12.

https://doi.org/10.1002/jcsm.13425. PMID: 38263952. PMCID: PMC10995263.

12. Ribeiro H.S., Neri S.G.R., Oliveira J.S. et al. Association between sarcopenia and clinical outcomes in chronic kidney disease patients: A systematic review and meta-analysis. Clin Nutr. 2022; 41(5): 1131–40.

https://doi.org/10.1016/j.clnu.2022.03.025. PMID: 35430544.

13. Yan Z., Shao T. Chronic inflammation in chronic kidney disease. Nephron. 2024; 148(3): 143–51.

https://doi.org/10.1159/000534447. PMID: 37852189.

14. Torres F.G., Molina M., Soler-Majoral J. et al. Evolving concepts on inflammatory biomarkers and malnutrition in chronic kidney disease. Nutrients. 2022; 14(20): 4297.

https://doi.org/10.3390/nu14204297. PMID: 36296981. PMCID: PMC9611115.

15. Ho H.-J., Shirakawa H. Oxidative stress and mitochondrial dysfunction in chronic kidney disease. Cells. 2022; 12(1): 88.

https://doi.org/10.3390/cells12010088. PMID: 36611880. PMCID: PMC9818928.

16. Zhang H., Qi G., Wang K. et al. Oxidative stress: Roles in skeletal muscle atrophy. Biochem Pharmacol. 2023; 214: 115664.

https://doi.org/10.1016/j.bcp.2023.115664. PMID: 37331636.

17. Kim D.W., Song S.H. Sarcopenia in chronic kidney disease: From bench to bedside. Korean J Intern Med. 2023; 38(3): 303–21.

https://doi.org/10.3904/kjim.2022.338. PMID: 37077132. PMCID: PMC10175867.

18. Яковенко А.А., Есаян А.М., Лаврищева Ю.В., Румянцев А.Ш. Миостатин – важное звено патогенеза белково-­энергетической недостаточности у пациентов, получающих лечение программным гемодиализом. Клиническая нефрология. 2023; 15(4): 5–10. (Yakovenko A.A., Yesayan A.M., Lavrishcheva Yu.V., Rumyantsev A.Sh. Myostatin is an important link in the pathogenesis of protein-energy deficiency in patients on program hemodialysis. Klinicheskaya nefrologiya = Clinical Nephrology. 2023; 15(4): 5–10 (In Russ.)).

https://dx.doi.org/10.18565/nephrology.2023.4.5-10. EDN: PKMUXC.

19. Bataille S., Chauveau P., Fouque D. et al. Myostatin and muscle atrophy during chronic kidney disease. Nephrol Dial Transplant. 2021; 36(11): 1986–93.

https://doi.org/10.1093/ndt/gfaa129. PMID: 32974666.

20. Sato E., Mori T., Mishima E. et al. Metabolic alterations by indoxyl sulfate in skeletal muscle induce uremic sarcopenia in chronic kidney disease. Sci Rep. 2016; 6: 36618.

https://doi.org/10.1038/srep36618. PMID: 27830716. PMCID: PMC5103201.

21. Pajek M., Jerman A., Osredkar J. et al. Association of uremic toxins and inflammatory markers with physical performance in dialysis patients. Toxins (Basel). 2018; 10(10): 403.

https://doi.org/10.3390/toxins10100403. PMID: 30275410. PMCID: PMC6215151.

22. Sabatino A., Cuppari L., Stenvinkel P. et al. Sarcopenia in chronic kidney disease: What have we learned so far? J Nephrol. 2021; 34(4): 1347–72.

https://doi.org/10.1007/s40620-020-00840-y. PMID: 32876940. PMCID: PMC8357704.

23. Бернс С.А., Шептулина А.Ф., Мамутова Э.М. с соавт. Саркопеническое ожирение: эпидемиология, патогенез и особенности диагностики. Кардиоваскулярная терапия и профилактика. 2023; 22(6): 78–85. (Berns S.A., Sheptulina A.F., Mamutova E.M. et al. Sarcopenic obesity: Epidemiology, pathogenesis and diagnostic criteria. Kardiovaskulyarnaya terapiya i profilaktika = Cardiovascular Therapy and Prevention. 2023; 22(6): 78–85 (In Russ.)).

https://doi.org/10.15829/1728-8800-2023-3576. EDN: OWOAYO.

24. Голоунина О.О., Фадеев В.В., Белая Ж.Е. Современные рекомендации по диагностике саркопении. Клиническая медицина. 2023; 101(4–5): 198–207. (Golounina O.O., Fadeev V.V., Belaya Zh.E. Modern guidelines for the diagnosis of sarcopenia. Klinicheskaya meditsina = Clinical Medicine. 2023; 101(4–5): 198–207 (In Russ.)).

http://doi.org/10.30629/0023-2149-2023-101-4-5-198-207. EDN: JFCIHL.

25. Cederholm T., Barazzoni R., Austin P. et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin Nutr. 2017; 36(1): 49–64.

https://doi.org/10.1016/j.clnu.2016.09.004. PMID: 27642056.

26. Fielding R.A., Vellas B., Evans W.J. et al. Sarcopenia: An undiagnosed condition in older adults. Current consensus definition: Prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc. 2011; 12(4): 249–56.

https://doi.org/10.1016/j.jamda.2011.01.003. PMID: 21527165. PMCID: PMC3377163.

27. Studenski S.A., Peters K.W., Alley D.E. et al. The FNIH sarcopenia project: Rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci. 2014; 69(5): 547–58.

https://doi.org/10.1093/gerona/glu010. PMID: 24737557. PMCID: PMC3991146.

28. Chen L.-K., Woo J., Assantachai P. et al. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc. 2020; 21(3): 300–307.e2.

https://doi.org/10.1016/j.jamda.2019.12.012. PMID: 32033882.

29. Фомина Н.В., Уткина Е.В. Современные методы диагностики саркопении. Сибирское медицинское обозрение. 2022; (5): 12–23. (Fomina N.V., Utkina E.V. Modern methods of sarcopenia diagnostics. Sibirskoe meditsinskoe obozreniye = Siberian Medical Review. 2022; (5): 12–23 (In Russ.)).

https://doi.org/10.20333/25000136-2022-5-12-23. EDN: JSLXJG.

30. Ackermans L.L.G.C., Rabou J., Basrai M. et al. Screening, diagnosis and monitoring of sarcopenia: When to use which tool? Clin Nutr ESPEN. 2022; 48: 36–44.

https://doi.org/10.1016/j.clnesp.2022.01.027. PMID: 35331514.

31. Lee K., Shin Y., Huh J. et al. Recent issues on body composition imaging for sarcopenia evaluation. Korean J Radiol. 2019; 20(2): 205–17.

https://doi.org/10.3348/kjr.2018.0479. PMID: 30672160. PMCID: PMC6342757.

32. Engelke K., Museyko O., Wang L., Laredo J.-D. Quantitative analysis of skeletal muscle by computed tomography imaging – State of the art. J Orthop Translat. 2018; 15: 91–103.

https://doi.org/10.1016/j.jot.2018.10.004. PMID: 30533385. PMCID: PMC6260391.

33. Chianca V., Albano D., Messina C. et al. Sarcopenia: Imaging assessment and clinical application. Abdom Radiol (NY). 2022; 47(9): 3205–16.

https://doi.org/10.1007/s00261-021-03294-3. PMID: 34687326. PMCID: PMC8536908.

34. Tosato M., Marzetti E., Cesari M. et al. Measurement of muscle mass in sarcopenia: From imaging to biochemical markers. Aging Clin Exp Res. 2017; 29(1): 19–27.

https://doi.org/10.1007/s40520-016-0717-0. PMID: 28176249.

35. Kyle U.G., Bosaeus I., De Lorenzo A.D. et al.; Composition of the ESPEN Working Group. Bioelectrical impedance analysis – part I: Review of principles and methods. Clin Nutr. 2004; 23(5): 1226–43.

https://doi.org/10.1016/j.clnu.2004.06.004. PMID: 15380917.

36. Kyle U.G., Bosaeus I., De Lorenzo A.D. et al.; ESPEN. Bioelectrical impedance analysis – part II: Utilization in clinical practice. Clin Nutr. 2004; 23(6): 1430–53.

https://doi.org/10.1016/j.clnu.2004.09.012. PMID: 15556267.

37. Molinari F., Caresio C., Acharya U.R. et al. Advances in quantitative muscle ultrasonography using texture analysis of ultrasound images. Ultrasound Med Biol. 2015; 41(9): 2520–32.

https://doi.org/10.1016/j.ultrasmedbio.2015.04.021. PMID: 26026375.

38. Patel H.P., White M.C., Westbury L. et al. Skeletal muscle morphology in sarcopenia defined using the EWGSOP criteria: Findings from the Hertfordshire Sarcopenia Study (HSS). BMC Geriatr. 2015; 15: 171.

https://doi.org/10.1186/s12877-015-0171-4. PMID: 26678672. PMCID: PMC4683975.

39. Martinez-Valdes E., Negro F., Laine C.M. et al. Tracking motor units longitudinally across experimental sessions with high-density surface electromyography. J Physiol. 2017; 595(5): 1479–96.

https://doi.org/10.1113/JP273662. PMID: 28032343. PMCID: PMC5330923.

40. Wagner D., Vogt S., Jamal F.I. et al. Application of microwave sensor technology in cardiovascular disease for plaque detection. Curr Dir Biomed Engin. 2016; 2(1): 273–77.

http://dx.doi.org/10.1515/cdbme-2016-0061.

41. Ribeiro H.S., Neri S.G.R., Oliveira J.S. et al. Association between sarcopenia and clinical outcomes in chronic kidney disease patients: A systematic review and meta-analysis. Clin Nutr. 2022; 41(5): 1131–40.

https://doi.org/10.1016/j.clnu.2022.03.025. PMID: 35430544.

42. Cruz-Jentoft A.J., Sayer A.A. Sarcopenia. Lancet. 2019; 393(10191): 2636–46.

https://doi.org/10.1016/S0140-6736(19)31138-9. PMID: 31171417.

43. Denguir S., Hellberg M., Almquist M., Clyne N. Survival in patients with CKD 3–5 after 12 months of exercise training – a post-hoc analysis of the RENEXC trial. BMC Nephrol. 2025; 26(1): 36.

https://doi.org/10.1186/s12882-024-03915-1. PMID: 39849350. PMCID: PMC11760650.

44. Deligiannis A., D’Alessandro C., Cupisti A. Exercise training in dialysis patients: Impact on cardiovascular and skeletal muscle health. Clin Kidney J. 2021; 14(Suppl 2): ii25–ii33.

https://doi.org/10.1093/ckj/sfaa273. PMID: 33981417. PMCID: PMC8101623.

45. Yin J., Zhang X., Wang Z. et al. Application of exercise therapy in patients with chronic kidney disease-induced muscle atrophy: A scoping review. BMC Sports Sci Med Rehabil. 2024; 16(1): 100.

https://doi.org/10.1186/s13102-024-00876-8. PMID: 38689329. PMCID: PMC11061900.

46. Zha Y., Qian Q. Protein nutrition and malnutrition in CKD and ESRD. Nutrients. 2017; 9(3): 208.

https://doi.org/10.3390/nu9030208. PMID: 28264439. PMCID: PMC5372871.

About the Authors

Mitkhat Z. Gasanov, MD, PhD (Medicine), associate professor of the Department of internal medicine, deputy director of the Medical Institute, Yaroslav-the-Wise Novgorod State University. Address: 173020, Veliky Novgorod, 6 Derzhavina St.
E-mail: mitkhat.gasanov@novsu.ru
ORCID: https://orcid.org/0000-0001-5856-0404. Scopus ID: 57200421886. eLibrary SPIN: 1236-0012
Mikhail M. Batyushin, MD, Dr. Sci. (Medicine), professor, professor of the Department of internal medicine No. 2, Rostov State Medical University of the Ministry of Healthcare of Russia. Address: 344022, Rostov-on-Don, 29 Nakhichevansky Lane.
E-mail: batjushin-m@rambler.ru
ORCID: https://orcid.org/0000-0002-2733-4524. Scopus ID: 57215575903. eLibrary SPIN: 3383-3143
Viktor R. Veber, MD, Dr. Sci. (Medicine), professor, academician of RAS, head of the Department of internal medicine, scientific director of the Medical institute, Yaroslav-the-Wise Novgorod State University. Address: 173020, Veliky Novgorod, 6 Derzhavina St.
E-mail: viktor.veber@novsu.ru
ORCID: https://orcid.org/0000-0001-7854-0849. Scopus ID: 58378839300. eLibrary SPIN: 8893-1970
Vasily S. Chulkov, MD, Dr. Sci. (Medicine), professor of the Department of internal medicine, director of the Medical Institute, Yaroslav-the-Wise Novgorod State University. Address: 173020, Veliky Novgorod, 6 Derzhavina St.
E-mail: vschulkov@rambler.ru
ORCID: https://orcid.org/0000-0002-0952-6856. Scopus ID: 55246314800. eLibrary SPIN: 8001-0051
Olga V. Azovtseva, MD, Dr. Sci. (Medicine), head of the Department of microbiology, immunology and infectious diseases of the Medical institute, Yaroslav-the-Wise Novgorod State University. Address: 173020, Veliky Novgorod, 6 Derzhavina St.
E-mail: olga.azovtseva@novsu.ru
ORCID: https://orcid.org/0000-0002-5548-7819. Scopus ID: 56527395900. eLibrary SPIN: 5724-9916

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.