ISSN 2412-4036 (print)
ISSN 2713-1823 (online)

The role of intestinal microbiocenosis in human iron metabolism

Bityumina L.A., Koroleva I.B., Vinokurov M.A., Gromova A.V., Kulikova N.G., Ploskireva A.A., Gorelov A.V.

Central Research Institute of Epidemiology of Rospotrebnadzor, Moscow
Abstract. Intestinal dysbiosis is considered as an underestimated factor in iron deficiency anemia (IDA) pathogenesis. Of particular interest is the contribution of bacterial genus Desulfovibrio spp. and its metabolite hydrogen sulfide to impaired iron absorption and distribution. The aim: to summarize current data on the impact of dysbiosis on iron homeostasis. Publications were selected from international and Russian databases (PubMed/MEDLINE, Scopus, WoS, eLIBRARY, CyberLeninka) to include in the review original studies, systematic reviews, meta-analyses, and clinical guidelines. According to the results of relevant scientific literature analysis, iron deficiency and oral Fe²+ salts cause an imbalance in the microbiota with an increased growth of Proteobacteria (including Enterobacteriaceae) while decreasing the number of butyrate producers. Desulfovibrio spp. compete with host organism for iron and produce hydrogen sulfide, which damages the intestinal epithelium and can directly suppress ferroportin synthesis, reducing iron export from enterocytes. Thus, dysbiosis is a significant factor of IDA persistence. Further study of this problem and aspects of complex therapy for IDA, such as dysbiosis correction, choice of parenteral iron administration, and personalized monitoring of hepcidin levels, is necessary.

Keywords

iron deficiency anemia
dysbiosis
microbiocenosis
Desulfovibrio spp

References

1. Ispas S, Tuta LA, Botnarciuc M, Ispas V, Staicovici S, Ali S et al. Metabolic disorders, the microbiome as an endocrine organ, and their relations with obesity: A literature review. J Pers Med. 2023;13(11):1602.

PMID: 38003917. PMCID: PMC10672252. https://doi.org/10.3390/jpm13111602

2. World Health Organization. Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. Geneva, Switzerland. 2015.

3. Miller JL. Iron deficiency anemia: A common and curable disease. Cold Spring Harb Perspect Med. 2013;3(7):a011866.

PMID: 23613366. PMCID: PMC3685880. https://doi.org/10.1101/cshperspect.a011866

4. Pasricha SR, Tye-Din J, Muckenthaler MU, Swinkels DW. Iron deficiency. Lancet. 2021;397(10270):233–48.

PMID: 33285139. https://doi.org/10.1016/S0140-6736(20)32594-0

5. Ganz T. Anemia of inflammation. N Engl J Med. 2019;381(12):1148–57.

PMID: 31532961. https://doi.org/10.1056/NEJMra1804281

6. Nemeth E, Ganz T. Hepcidin – ferroportin interaction controls systemic iron homeostasis. Int J Mol Sci. 2021;22(12):6493.

PMID: 34204327. PMCID: PMC8235187. https://doi.org/10.3390/ijms22126493

7. Mayneris-Perxachs J, Cardellini M, Hoyles L, Latorre J, Davato F, Moreno-Navarrete JM et al. Iron status influences non-alcoholic fatty liver disease in obesity through the gut microbiome. Microbiome. 2021;9(1):104.

PMID: 33962692. PMCID: PMC8106161. https://doi.org/10.1186/s40168-021-01052-7

8. Lee T, Clavel T, Smirnov K, Schmidt A, Lagkouvardos I, Walker A et al. Oral versus intravenous iron replacement therapy distinctly alters the gut microbiota and metabolome in patients with IBD. Gut. 2017;66(5):863–71.

PMID: 26848182. PMCID: PMC5531225. https://doi.org/10.1136/gutjnl-2015-309940

9. Schalk IJ, Hannauer M, Braud A. New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol. 2011;13(11):2844–54.

PMID: 21883800. https://doi.org/10.1111/j.1462-2920.2011.02556.x

10. Paganini D, Zimmermann MB. The effects of iron fortification and supplementation on the gut microbiome and diarrhea in infants and children: A review. Am J Clin Nutr. 2017;106(Suppl 6):1688S–1693S.

PMID: 29070552. PMCID: PMC5701709. https://doi.org/10.3945/ajcn.117.156067

11. Tolkien Z, Stecher L, Mander AP, Pereira DI, Powell JJ. Ferrous sulfate supplementation causes significant gastrointestinal side-effects in adults: A systematic review and meta-analysis. PLoS One. 2015;10(2):e0117383.

PMID: 25700159. PMCID: PMC4336293. https://doi.org/10.1371/journal.pone.0117383

12. Payne SM. Iron and virulence in the family Enterobacteriaceae. Crit Rev Microbiol. 1988;16(2):81–111.

PMID: 3067977. https://doi.org/10.3109/10408418809104468

13. Rusu IG, Suharoschi R, Vodnar DC, Pop CR, Socaci SA, Vulturar R et al. Iron supplementation influence on the gut microbiota and probiotic intake effect in iron deficiency – a literature-based review. Nutrients. 2020;12(7):1993.

PMID: 32635533. PMCID: PMC7400826. https://doi.org/10.3390/nu12071993

14. Mahalhal A, Williams JM, Johnson S, Ellaby N, Duckworth CA, Burkitt MD et al. Oral iron exacerbates colitis and influences the intestinal microbiome. PLoS One. 2018;13(10):e0202460.

PMID: 30308045. PMCID: PMC6181268. https://doi.org/10.1371/journal.pone.0202460

15. Chow J, Lee SM, Shen Y, Khosravi A, Mazmanian SK. Host-bacterial symbiosis in health and disease. Adv Immunol. 2010;107:243–74.

PMID: 21034976. PMCID: PMC3152488. https://doi.org/10.1016/B978-0-12-381300-8.00008-3

16. Das NK, Schwartz AJ, Barthel G, Inohara N, Liu Q, Sankar A et al. Microbial metabolite signaling is required for systemic iron homeostasis. Cell Metab. 2020;31(1):115–30.e6.

PMID: 31708445. PMCID: PMC6949377. https://doi.org/10.1016/j.cmet.2019.10.005

17. Schalk IJ, Hannauer M, Braud A. New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol. 2011;13(11):2844–54.

PMID: 21883800. https://doi.org/10.1111/j.1462-2920.2011.02556.x

18. Qian L, Lu S, Jiang W, Mu Q, Lin Y, Gu Z et al. Lactobacillus plantarum alters gut microbiota and metabolites composition to improve high starch metabolism in Megalobrama Amblycephala. Animals (Basel). 2025;15(4):583.

PMID: 40003065. PMCID: PMC11852042. https://doi.org/10.3390/ani15040583

19. Malesza IJ, Bartkowiak-Wieczorek J, Winkler-Galicki J, Nowicka A, Dzieciołowska D, Błaszczyk M et al. The dark side of iron: The relationship between iron, inflammation and gut microbiota in selected diseases associated with iron deficiency anaemia – a narrative review. Nutrients. 2022;14(17):3478.

PMID: 36079734. PMCID: PMC9458173. https://doi.org/10.3390/nu14173478

20. He B, Duan T, Hu D, Chen L, Qiao L, Song D et al. Lactobacillus plantarum 17-1 ameliorates DSS-induced colitis by modulating the colonic microbiota composition and metabolome in mice. Nutrients. 2025;17(8):1348.

PMID: 40284212. PMCID: PMC12030267. https://doi.org/10.3390/nu17081348

21. Blaak EE, Canfora EE, Theis S, Frost G, Groen AK, Mithieux G et al. Short chain fatty acids in human gut and metabolic health. Benef Microbes. 2020;11(5):411–55.

PMID: 32865024. https://doi.org/10.3920/BM2020.0057

22. Xie ZZ, Liu Y, Bian JS. Hydrogen sulfide and cellular redox homeostasis. Oxid Med Cell Longev. 2016;2016:6043038.

PMID: 26881033. PMCID: PMC4736422. https://doi.org/10.1155/2016/6043038

23. Goubern M, Andriamihaja M, Nubel T, Blachier F, Bouillaud F. Sulfide, the first inorganic substrate for human cells. FASEB J. 2007;21(8):1699–706.

PMID: 17314140. https://doi.org/10.1096/fj.06-7407com

24. Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: Mechanisms and therapeutic prospects. Signal Transduct Target Ther. 2024;9(1):271.

PMID: 39396974. PMCID: PMC11486532. https://doi.org/10.1038/s41392-024-01969-z

25. Banerjee R. Hydrogen sulfide: Redox metabolism and signaling. Antioxid Redox Signal. 2011;15(2):339–41.

PMID: 21275829. PMCID: PMC3118658. https://doi.org/10.1089/ars.2011.3912

26. Loveikyte R, Bourgonje AR, van der Reijden JJ, Bulthuis MLC, Hawinkels LJAC, Visschedijk MC et al. Hepcidin and iron status in patients with inflammatory bowel disease undergoing induction therapy with vedolizumab or infliximab. Inflamm Bowel Dis. 2023;29(8):1272–84.

PMID: 36748574. PMCID: PMC10393210. https://doi.org/10.1093/ibd/izad010

27. Weiss G, Schett G. Anaemia in inflammatory rheumatic diseases. Nat Rev Rheumatol. 2013;9(4):205–15.

PMID: 23147894. https://doi.org/10.1038/nrrheum.2012.183

28. Yanoff LB, Menzie CM, Denkinger B, Sebring NG, McHugh T, Remaley AT, Yanovski JA. Inflammation and iron deficiency in the hypoferremia of obesity. Int J Obes (Lond). 2007;31(9):1412–19.

PMID: 17438557. PMCID: PMC2266872. https://doi.org/10.1038/sj.ijo.0803625

29. Chow MD, Lee YH, Guo GL. The role of bile acids in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Mol Aspects Med. 2017;56:34–44.

PMID: 28442273. PMCID: PMC5812256. https://doi.org/10.1016/j.mam.2017.04.004

30. Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat Commun. 2018;9(1):3294.

PMID: 30120222. PMCID: PMC6098093. https://doi.org/10.1038/s41467-018-05470-4

About the Authors

Lyutsiya A. Bityumina, MD, researcher and bacteriologist at Research group for antibiotic resistance of food pathogens, Central Research Institute of Epidemiology of Rospotrebnadzor. Address: 111123, Moscow, 3A Novogireevskaya St.
E-mail: bitumina@cmd.su
ORCID: https://orcid.org/0000-0002-5378-0827
Irina B. Koroleva, MD, junior researcher at Research group for antibiotic resistance of food pathogens, Central Research Institute of Epidemiology of Rospotrebnadzor. Address: 111123, Moscow, 3A Novogireevskaya St.
E-mail: martiusheva@cmd.su
ORCID: https://orcid.org/0000-0002-9397-9646
Anastasia V. Gromova, MD, PhD (Veterinary medicine), researcher at the Department of molecular diagnostics and epidemiology of reproductive organs’ infections, Central Research Institute of Epidemiology of Rospotrebnadzor. Address: 111123, Moscow, 3A Novogireevskaya St.
E-mail: anastgromow@yandex.ru
ORCID: https://orcid.org/0000-0003-4664-3178
Mikhail A. Vinokurov, MD, PhD (Medicine), researcher at the Department of molecular methods for genetic polymorphisms studying at the Central Research Institute of Epidemiology of Rospotrebnadzor. Address: 111123, Moscow, 3A Novogireevskaya St.
E-mail: vinokurov@cmd.su
ORCID: https://orcid.org/0000-0002-4101-0702
Nina G. Kulikova, MD, PhD (Biology), head of Research group for antibiotic resistance of food pathogens, Central Research Institute of Epidemiology of Rospotrebnadzor. Address: 111123, Moscow, 3A Novogireevskaya St.
E-mail: kulikova_ng@cmd.su
ORCID: https://orcid.org/0000-0002-1716-6969
Antonina A. Ploskireva, MD, Dr. Sci. (Medicine), professor, professor of RAS, deputy director for clinical work, Central Research Institute of Epidemiology of Rospotrebnadzor. Address: 111123, Moscow, 3A Novogireevskaya St.
E-mail: antoninna@mail.ru
ORCID: https://orcid.org/0000-0002-3612-1889
Alexander V. Gorelov, MD, Dr. Sci (Medicine), professor, academician of RAS, deputy director for research of Central Research Institute of Epidemiology of Rospotrebnadzor, head of the Department of infectious diseases and epidemiology, Russian University of Medicine of the Ministry of Healthcare of Russia.
E-mail: agorelov_05@mail.ru
ORCID: https://orcid.org/0000-0001-9257-0171

Similar Articles