New opportunities in therapy for severe bronchial asthma
Summary. Controlling the symptoms of bronchial asthma (BA), especially in severe cases, is one of the most difficult tasks in modern pulmonology. In recent years, with identification of so-called T2 and non-T2 endotypes of the disease, approaches to BA therapy titration have changed significantly. Genetically engineered biopharmaceutical drugs are prescribed at the fifth stage of treatment, i.e., when other treatment options fail to provide adequate control over the symptoms. One such a drug is tezepelumab, a thymic stromal lymphopoietin inhibitor. Clinical trials have shown that it significantly reduces the frequency of exacerbations and the severity of bronchial obstruction, improves symptoms control, and is well tolerated by patients. The aim of the introduced review is to study current approaches to the treatment of severe bronchial asthma.Prozorova G.G.., Budnevsky A.V., Feigelman S.N.
Keywords
References
1. Global Initiative for Asthma. Global strategy for asthma management and prevention. 2025. URL: https://ginasthma.org/ (date of access – 08.12.2025).
2. Архипов В.В., Айсанов З.P., Авдеев C.Н. Эффективность комбинаций ингаляционных глюкокортикостероидов и длительно действующих β-агонистов в условиях реальной медицинской практики: результаты многоцентрового кросс-секционного исследования у российских пациентов с бронхиальной астмой. Пульмонология. 2021;31(5):613–626. (Arkhipov VV, Aisanov ZR, Avdeev SN. Effectiveness of inhaled corticosteroids and long-acting β-agonists combinations in real clinical practice: Results of a multicenter cross-sectional study in Russian patients with asthma. Pulmonologiya = Pulmonology. 2021;31(5):613–626 (In Russ.)).
EDN: MHIYDG. https://doi.org/10.18093/0869-0189-2021-31-5-613-626
3. Клинические рекомендации. Бронхиальная астма. Российская ассоциация аллергологов и клинических иммунологов, Союз педиатров России, Ассоциация врачей и специалистов медицины труда, Российское респираторное общество. Рубрикатор клинических рекомендаций Минздрава России. 2024. ID: 359_3. Доступ: https://cr.minzdrav.gov.ru/view-cr/359_3 (дата обращения – 08.12.2025). (Clinical guidelines. Bronchial asthma. Russian Association of Allergologists and Clinical Immunologists, Union of Pediatricians of Russia, Association of Doctors and Occupational Medicine Specialists, Russian Respiratory Society. Rubricator of clinical guidelines of the Ministry of Healthcare of Russia. 2024. ID: 359_3. URL: https://cr.minzdrav.gov.ru/view-cr/359_3 (date of access – 08.12.2025) (In Russ.)).
4. Agache I, Akdis C, Jutel M, Virchow JC. Untangling asthma phenotypes and endotypes. Allergy. 2012;67(7):835–46.
PMID: 22594878. https://doi.org/10.1111/j.1398-9995.2012.02832.x
5. Global Initiative for Asthma. Diagnosis and management of difficult-to-treat & severe asthma. 2025. URL: https://ginasthma.org/2025-gina-severe-asthma-guide/ (date of access – 08.12.2025).
6. Белевский А.С., Ненашева Н.М., Кравченко Н.Ю., Макарьянц Н.Н., Кунцев Д.А. Данные Общероссийского регистра пациентов с тяжелой бронхиальной астмой. Терапевтический архив. 2022;94(7):865–871. (Belevskiy AS, Nenasheva NM, Kravchenko NYu, Makariants NN, Kuntsev DA. Data from the Russian Severe Asthma Registry (RSAR). Terapevticheskiy arkhiv = Therapeutic Archive. 2022;94(7):865–87 (In Russ.)).
EDN: YYEOSM. https://doi.org/10.26442/00403660.2022.07.201713
7. Недогода С.В., Авдеев С.Н., Саласюк А.С., Барыкина И.Н., Лутова В.О., Попова Е.А. Фармакоэкономическая эффективность применения препарата тезепелумаб для лечения пациентов с тяжелой бронхиальной астмой в Российской Федерации. Пульмонология. 2025;35(3):380–389. (Nedogoda SV, Avdeev SN, Salasyuk AS, Barykina IN, Lutova VO, Popova EA. Pharmacoeconomic efficiency of tezepelumab for the treatment of patients with severe asthma in the Russian Federation. Pulmonologiya. 2025;35(3):380–389 (In Russ.)).
EDN: CUBOJZ. https://doi.org/10.18093/0869-0189-2025-35-3-380-389
8. Numata T, Araya J, Miyagawa H, Okuda K, Fujita Y, Utsumi H et al. Effectiveness of switching biologics for severe asthma patients in Japan: A single-center retrospective study. J Asthma Allergy. 2021;14:609–18.
PMID: 34113131. https://doi.org/10.2147/JAA.S311975
9. Maddux JT, Inselman JW, Jeffery MM, Lam RW, Shah ND, Rank MA. Persistence of asthma biologic use in a US claims database. Ann Allergy Asthma Immunol. 2021;127(6):648–54.
PMID: 33971361. https://doi.org/10.1016/j.anai.2021.04.026
10. Kavanagh JE, Hearn AP, Dhariwal J, d’Ancona G, Douiri A, Roxas C et al. Real-world effectiveness of benralizumab in severe eosinophilic asthma. Chest. 2021;159(2):496–506.
PMID: 32882249. https://doi.org/10.1016/j.chest.2020.08.2083
11. Israel E, Canonica GW, Brusselle G, Yang S, Howarth PH, Martin AL et al. Real-life effectiveness of mepolizumab in severe asthma: A systematic literature review. J Asthma. 2022;59(11):2201–17.
PMID: 34951336. https://doi.org/10.1080/02770903.2021.2008431
12. McDowell PJ, Diver S, Yang F, Borg C, Busby J, Brown V et al. The inflammatory profile of exacerbations in patients with severe refractory eosinophilic asthma receiving mepolizumab (the MEX study): A prospective observational study. Lancet Respir Med. 2021;9(10):1174–84.
PMID: 33971168. https://doi.org/10.1016/S2213-2600(21)00004-7
13. Casale T, Molfino NA, Silver J, Bogart M, Packnett E, McMorrow D et al. Real-world effectiveness of mepolizumab in patients with severe asthma and associated comorbidities. Ann Allergy Asthma Immunol. 2021;127(3):354–62.e2.
PMID: 34038773. https://doi.org/10.1016/j.anai.2021.05.021
14. Tran TN, Zeiger RS, Peters SP, Colice G, Newbold P, Goldman M, Chipps BE. Overlap of atopic, eosinophilic, and TH2-high asthma phenotypes in a general population with current asthma. Ann Allergy Asthma Immunol. 2016;116(1):37–42.
PMID: 26707771. https://doi.org/10.1016/j.anai.2015.10.027
15. Denton E, Price DB, Tran TN, Canonica GW, Menzies-Gow A, FitzGerald JM et al. Cluster analysis of inflammatory biomarker expression in the international severe asthma registry. J Allergy Clin Immunol Pract. 2021;9(7):2680–88.e7.
PMID: 33744476. https://doi.org/10.1016/j.jaip.2021.02.059
16. Bateman ED, Reddel HK, van Zyl-Smit RN, Agusti A. The asthma-COPD overlap syndrome: Towards a revised taxonomy of chronic airways diseases? Lancet Respir Med. 2015;3(9):719–28.
PMID: 26255108. https://doi.org/10.1016/S2213-2600(15)00254-4
17. Akenroye A, McCormack M, Keet C. Severe asthma in the US population and eligibility for mAb therapy. J Allergy Clin Immunol. 2020;145(4):1295–97.e6.
PMID: 31866437. https://doi.org/10.1016/j.jaci.2019.12.009
18. Menzies-Gow A, Wechsler ME, Brightling CE. Unmet need in severe, uncontrolled asthma: Can anti-TSLP therapy with tezepelumab provide a valuable new treatment option? Respir Res. 2020;21(1):268.
PMID: 33059715. https://doi.org/10.1186/s12931-020-01505-x
19. Van Rompaey D, Verstraete K, Peelman F, Savvides SN, Augustyns K, Van Der Veken P et al. Virtual screening for inhibitors of the human TSLP:TSLPR interaction. Sci Rep. 2017;7(1):17211.
PMID: 29222519. https://doi.org/10.1038/s41598-017-17620-7
20. Corren J, Parnes JR, Wang L, Mo M, Roseti SL, Griffiths JM et al. Tezepelumab in adults with uncontrolled asthma. N Engl J Med. 2017;377(10):936–46.
PMID: 28877011. https://doi.org/10.1056/NEJMoa1704064
21. Fort MM, Cheung J, Yen D, Li J, Zurawski SM, Lo S et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity. 2001;15(6):985–95.
PMID: 11754819. https://doi.org/10.1016/s1074-7613(01)00243-6
22. Toki S, Goleniewska K, Zhang J, Zhou W, Newcomb DC, Zhou B et al. TSLP and IL-33 reciprocally promote each other’s lung protein expression and ILC2 receptor expression to enhance innate type-2 airway inflammation. Allergy. 2020;75(7):1606–17.
PMID: 31975538. https://doi.org/10.1111/all.14196
23. Gauvreau GM, Sehmi R, Ambrose CS, Griffiths JM. Thymic stromal lymphopoietin: Its role and potential as a therapeutic target in asthma. Expert Opin Ther Targets. 2020;24(8):777–92.
PMID: 32567399. https://doi.org/10.1080/14728222.2020.1783242
24. Porsbjerg CM, Sverrild A, Lloyd CM, Menzies-Gow AN, Bel EH. Anti-alarmins in asthma: Targeting the airway epithelium with next-generation biologics. Eur Respir J. 2020;56(5):2000260.
PMID: 32586879. https://doi.org/10.1183/13993003.00260-2020
25. Roan F, Obata-Ninomiya K, Ziegler SF. Epithelial cell-derived cytokines: More than just signaling the alarm. J Clin Invest. 2019;129(4):1441–51.
PMID: 30932910. https://doi.org/10.1172/JCI124606
26. Kaur D, Doe C, Woodman L, Heidi Wan WY, Sutcliffe A, Hollins F et al. Mast cell-airway smooth muscle crosstalk: The role of thymic stromal lymphopoietin. Chest. 2012;142(1):76–85.
PMID: 22052771. https://doi.org/10.1378/chest.11-1782
27. Allakhverdi Z, Comeau MR, Jessup HK, Yoon BR, Brewer A, Chartier S et al. Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells. J Exp Med. 2007;204(2):253–58.
PMID: 17242164. https://doi.org/10.1084/jem.20062211
28. Ishmael FT. The inflammatory response in the pathogenesis of asthma. J Am Osteopath Assoc. 2011;111(11 Suppl 7):S11–17.
PMID: 22162373.
29. Comeau MR, Ziegler SF. The influence of TSLP on the allergic response. Mucosal Immunol. 2010;3(2):138–47.
PMID: 20016474. https://doi.org/10.1038/mi.2009.134
30. Koczulla AR, Vogelmeier CF, Garn H, Renz H. New concepts in asthma: Clinical phenotypes and pathophysiological mechanisms. Drug Discov Today. 2017;22(2):388–96.
PMID: 27867084. https://doi.org/10.1016/j.drudis.2016.11.008
31. Brusselle G, Bracke K. Targeting immune pathways for therapy in asthma and chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2014;11 Suppl 5:S322–28.
PMID: 25525740. https://doi.org/10.1513/AnnalsATS.201403-118AW
32. Brusselle GG, Maes T, Bracke KR. Eosinophils in the spotlight: Eosinophilic airway inflammation in nonallergic asthma. Nat Med. 2013;19(8):977–79.
PMID: 23921745. https://doi.org/10.1038/nm.3300
33. Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol. 2015;16(1):45–56.
PMID: 25521684. https://doi.org/10.1038/ni.3049
34. Li Y, Wang W, Lv Z, Li Y, Chen Y, Huang K et al. Elevated expression of IL-33 and TSLP in the airways of human asthmatics in vivo: A potential biomarker of severe refractory disease. J Immunol. 2018;200(7):2253–62.
PMID: 29453280. https://doi.org/10.4049/jimmunol.1701455
35. Shikotra A, Choy DF, Ohri CM, Doran E, Butler C, Hargadon B, et al. Increased expression of immunoreactive thymic stromal lymphopoietin in patients with severe asthma. J Allergy Clin Immunol. 2012;129(1):104–11.e1–9.
PMID: 21975173. https://doi.org/10.1016/j.jaci.2011.08.031
36. Cao L, Liu F, Liu Y, Liu T, Wu J, Zhao J et al. TSLP promotes asthmatic airway remodeling via p38-STAT3 signaling pathway in human lung fibroblast. Exp Lung Res. 2018;44(6):288–301.
PMID: 30428724. https://doi.org/10.1080/01902148.2018.1536175
37. Wu J, Dong F, Wang RA, Wang J, Zhao J, Yang M, et al. Central role of cellular senescence in TSLP-induced airway remodeling in asthma. PLoS One. 2013;8(10):e77795.
PMID: 24167583. https://doi.org/10.1371/journal.pone.0077795
38. Liu XY, Yang KY, Wang MQ, Kwok JS, Zeng X, Yang Z et al. High-quality assembly of Dermatophagoides pteronyssinus genome and transcriptome reveals a wide range of novel allergens. J Allergy Clin Immunol. 2018;141(6):2268–71.e8.
PMID: 29305317. https://doi.org/10.1016/j.jaci.2017.11.038
39. Lee HC, Headley MB, Loo YM, Berlin A, Gale M Jr, Debley JS et al. Thymic stromal lymphopoietin is induced by respiratory syncytial virus-infected airway epithelial cells and promotes a type 2 response to infection. J Allergy Clin Immunol. 2012;130(5):1187–96.e5.
PMID: 22981788. https://doi.org/10.1016/j.jaci.2012.07.031
40. Uller L, Leino M, Bedke N, Sammut D, Green B, Lau L et al. Double-stranded RNA induces disproportionate expression of thymic stromal lymphopoietin versus interferon-beta in bronchial epithelial cells from donors with asthma. Thorax. 2010;65(7):626–32.
PMID: 20627922. https://doi.org/10.1136/thx.2009.125930
41. Kato A, Favoreto S Jr, Avila PC, Schleimer RP. TLR3- and Th2 cytokine-dependent production of thymic stromal lymphopoietin in human airway epithelial cells. J Immunol. 2007;179(2):1080–87.
PMID: 17617600. https://doi.org/10.4049/jimmunol.179.2.1080
42. Gauvreau GM, O’Byrne PM, Boulet LP, Wang Y, Cockcroft D, Bigler J et al. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N Engl J Med. 2014;370(22):2102–10.
PMID: 24846652. https://doi.org/10.1056/NEJMoa1402895
43. Diver S, Khalfaoui L, Emson C, Wenzel SE, Menzies-Gow A, Wechsler ME et al. Effect of tezepelumab on airway inflammatory cells, remodelling, and hyperresponsiveness in patients with moderate-to-severe uncontrolled asthma (CASCADE): A double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Respir Med. 2021;9(11):1299–312.
PMID: 34256031. https://doi.org/10.1016/S2213-2600(21)00226-5
44. Menzies-Gow A, Corren J, Bourdin A, Chupp G, Israel E, Wechsler ME et al. Tezepelumab in adults and adolescents with severe, uncontrolled asthma. N Engl J Med. 2021;384(19):1800–9.
PMID: 33979488. https://doi.org/10.1056/NEJMoa2034975
45. Corren J, Parnes JR, Wang L, Mo M, Roseti SL, Griffiths JM et al. Tezepelumab in adults with uncontrolled asthma. N Engl J Med. 2017;377(10):936–46.
PMID: 28877011. https://doi.org/10.1056/NEJMoa1704064
46. Wechsler ME, Menzies-Gow A, Brightling CE, Kuna P, Korn S, Welte T et al. Evaluation of the oral corticosteroid-sparing effect of tezepelumab in adults with oral corticosteroid-dependent asthma (SOURCE): A randomised, placebo-controlled, phase 3 study. Lancet Respir Med. 2022;10(7):650–60.
PMID: 35364018. https://doi.org/10.1016/S2213-2600(21)00537-3
47. Menzies-Gow A, Wechsler ME, Brightling CE, Korn S, Corren J, Israel E et al. Long-term safety and efficacy of tezepelumab in people with severe, uncontrolled asthma (DESTINATION): A randomised, placebo-controlled extension study. Lancet Respir Med. 2023;11(5):425–38.
PMID: 36702146. https://doi.org/10.1016/S2213-2600(22)00492-1
About the Authors
Galina G. Prozorova, MD, Dr. Sci. (Medicine), associated professor, professor of the Department of therapeutic disciplines of the Institute of additional professional education, N.N. Burdenko Voronezh State Medical University of the Ministry of Healthcare of Russia. Address: 394036, Voronezh, 10 Studencheskaya St.E-mail: prozorovagg@gmail.com
ORCID: https://orcid.org/0000-0001-8675-1590. eLibrary SPIN: 6630-8587
Andrey V. Budnevsky, MD, Dr. Sci. (Medicine), professor, head of the Department of faculty therapy, vice-rector for research and innovation, N.N. Burdenko Voronezh State Medical University of the Ministry of Healthcare of Russia, Honored Inventor of the Russian Federation. Address: 394036, Voronezh, 10 Studencheskaya St.
E-mail: budnev@list.ru
ORCID: https://orcid.org/0000-0002-1171-2746. eLibrary SPIN: 7381-0612
Sophia N. Feigelman, MD, PhD (Medicine), assistant at the Department of faculty therapy, N.N. Burdenko Voronezh State Medical University of the Ministry of Healthcare of Russia. Address: 394036, Voronezh, 10 Studencheskaya St.
E-mail: s.feygelman@gmail.com
ORCID: https://orcid.org/0000-0003-4128-6044. eLibrary SPIN: 1645-1203



