Diagnostic and prognostic significance of endothelial dysfunction biochemical markers in patients with discirculatory encephalopathy after COVID-19
Abstract. Cerebrovascular diseases and COVID-19 are comorbid conditions. Endothelial dysfunction is one of the pathogenetic mechanisms for cerebrovascular diseases and COVID-19 development. Laboratory feature of endothelial dysfunction is a change in the level of endothelial dysfunction biochemical markers in the blood serum of patients. The aim: to study the diagnostic and prognostic value of biochemical markers of endothelial dysfunction in patients with dyscirculatory encephalopathy (DE) who underwent COVID-19. Material and methods. For the period from 03/01/22 to 05/31/22, 172 patients were examined, including 137 (79,6%) female and 35 (20.4%) male patients who had COVID-19 and are being examined at the base polyclinic No. 2 of the Central clinical medical and sanitary unit named after honored doctor of Russia V.A. Egorov, Ulyanovsk. Median time from the onset of COVID-19 to examination was 4.8 months. DE was not found in 6% of patients who underwent COVID-19, stage I DE was present in 45%, stage II in 27%, stage III in 22% of participants of the study. Blood sampling was carried out once during the all examination period. Levels of vasculoendothelial growth factor (VEGFA), interleukins 6, 10, 18, tumor necrosis factor-alpha, and monocytic chemotactic protein 1 were studied in blood serum. The Mann–Whitney U-test was used to test the hypothesis of a difference in the samples of patient groups. For all types of statistical analysis, differences were considered to be significant at the achieved significance level p <0,05. Results. According to our research, with an increase of the age of patients who have undergone COVID-19, and the DE stage the level of VEGFA in serum was also increasing (p <0,05). Conclusion. From studied cytokines, the predictive role as a marker of endothelial dysfunction was shown by VEGFA. Its high level in blood serum is associated with the age of DE patients, who have undergone COVID-19, and with the stage of DE they had.Mashin V.V., Dolgova D.R., Belova L.A., Kotova E. Yu., Kruglova L.R., Statenina A.P., Kozin A.A., Israfilova R.R., Martynova D.K.
Keywords
References
1. Inciardi R.M Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020; 5(7): 819–24. https://dx.doi.org/10.1001/jamacardio.2020.1096.
2. Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223): 497–506. https://dx.doi.org/10.1016/S0140-6736(20)30183-5.
3. Mao L., Jin H., Wang M. et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020; 77(6): 683–90. https://dx.doi.org/10.1001/jamaneurol.2020.1127.
4. Wang D., Hu B., Hu C. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020; 323(11): 1061–69. https://dx.doi.org/10.1001/jama.2020.1585. Erratum in: JAMA. 2021; 325(11): 1113.
5. Garrigues E., Janvier P., Kherabi Y. et al. Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19. J Infect. 2020; 81(6): e4–e6. https://dx.doi.org/10.1016/j.jinf.2020.08.029.
6. Bourgonje A.R., Abdulle A.E., Timens W. et al. Angiotensinconverting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol. 2020; 251(3): 228–48. https://dx.doi.org/10.1002/path.5471.
7. Barrantes F.J. Central nervous system targets and routes for SARS-CoV-2: Current views and new hypotheses. ACS Chem Neurosci. 2020; 11(18): 2793–803. https://dx.doi.org/10.1021/acschemneuro.0c00434.
8. Brann D.H., Tsukahara T., Weinreb C. et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. SciAdv. 2020; 6(31): eabc5801. https://dx.doi.org/10.1126/sciadv.abc5801.
9. Pezzini A., Padovani A. Lifting the mask on neurological manifestations of COVID-19. Nat Rev Neurol. 2020; 16(11): 636–44. https://dx.doi.org/10.1038/s41582-020-0398-3.
10. Jose R.J., Manuel A. COVID-19 cytokine storm: The interplay between inflammation and coagulation. Lancet Respir Med. 2020; 8(6): e46–47. https://dx.doi.org/10.1016/S2213-2600(20)30216-2.
11. Верткин А.Л., Авдеев С.Н., Ройтман Е.В. с соавт. Вопросы лечения COVID-19 с позиции коррекции эндотелиопатии и профилактики тромботических осложнений. Согласованная позиция экспертов. Профилактическая медицина. 2021; 24(4): 45–51. [Vertkin A.L., Avdeev S.N., Roitman E.V. et al. Questions of COVID-19 treatment from the position of correction of endotheliopathy and prevention of thrombotic complications. Coordinated position of experts. Profilakticheskaya meditsina = Preventive Medicine. 2021; 24(4): 45–51 (In Russ.)]. https://dx.doi.org/10.17116/profmed20212404145. EDN: MYILVR.
12. Mehta P., McAuley D.F., Brown M. et al. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395(10229): 1033–34. https://dx.doi.org/10.1016/S0140-6736(20)30628-0.
13. Бобкова С.С., Жуков А.А., Проценко Д.Н. с соавт. Критический анализ концепции «цитокиновой бури» у пациентов с новой коронавирусной инфекцией COVID-19. Обзор литературы. Вестник интенсивной терапии им. А.И. Салтанова. 2021; (1): 57–68. [Bobkova S.S., Zhukov A.A., Protsenko D.N. et al. Critical analysis of «cytokine storm» concept in patients with new coronavirus infection COVID-19. Literature review. Vestnik intensivnoy terapii imeni A.I. Saltanova = A.I. Saltanov Bulletin of Intensive Care. 2021; (1): 57–68 (In Russ.)]. https://dx.doi.org/10.21320/1818-474X-2021-1-57-68. EDN: APFKIT.
14. Liu Y., Zhang C., Huang F. et al. Elevated plasma level of selective cytokines in COVID-19 patients reflect viral load and lung injury. Natl Sci Rev. 2020; 7(6): 1003–11. https://dx.doi.org/10.1093/nsr/nwaa037.
15. Liu Jing, Li S., Liu Jia et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine. 2020; 55: 102763. https://dx.doi.org/10.1016/j.ebiom.2020.102763.
16. Al-Faraj H.A.M.H., Al-Hasnawi A.T.N., Al-Mamori M.A.A. Elevated serum levels of MCP-1 and IP-10 chemokines in patients with COVID-19 infection. NeuroQuantology. 2022; 20(6): 6769–79.
17. Гришаева А.А., Понежева Ж.Б., Чанышев М.Д. с соавт. Состояние цитокиновой системы у больных с тяжелой формой COVID- 19. Лечащий врач. 2021; (6): 48–51. [Grishaeva A.A., Ponezheva Zh.B., Chanyshev M.D. et al. The state of the cytokine system in patients with severe COVID-19. Lechashchiy vrach = Attending Physician. 2021; (6): 48–51 (In Russ.)]. https://dx.doi.org/10.51793/OS.2021.24.6.010. EDN: QXGEAQ.
18. Chen Y., Wang J., Liu C. et al. IP-10 and MCP-1 as biomarkers associated with disease severity of COVID-19. Mol Med. 2020; 26(1): 97. https://dx.doi.org/10.1186/s10020-020-00230-x.
19. Han H., Ma Q., Li C. et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg Microbes Infect. 2020; 9(1): 1123–30. https://dx.doi.org/10.1080/22221751.2020.1770129.
20. Del Valle D.M., KimSchulze S., Huang H. et al. An inflammatory cytokine signature pre-dicts COVID19 severity and survival. Nat Med. 2020; 26(10): 1636–43. https://dx.doi.org/10.1038/s41591-020-1051-9.
21. Liu Y., Chen D., Hou J. et al. An intercorrelated cytokine network identified at the center of cytokine storm predicted COVID-19 prognosis. Cytokine. 2021; 138: 155365. https://dx.doi.org/10.1016/j.cyto.2020.155365.
22. Chen G., Wu D.I., Guo W. et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020; 130(5): 2620–29. https://dx.doi.org/10.1172/JCI137244.
23. Herold T., Jurinovic V., Arnreich C. et al. Elevated levels of IL-6 and CRP predict the need for mechanical ventilation in COVID-19. J Allergy Clin Immunol. 2020; 146(1): 128–36.e4. https://dx.doi.org/10.1016/j.jaci.2020.05.008.
24. Ruan Q., Yang K., Wang W. et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020; 46(5): 846–48. https://dx.doi.org/10.1007/s00134-020-05991.
25. Chen G., Wu D., Guo W. et al. Clinical and immunologic features in severe and moderate coronavirus disease 2019. J Clin Invest. 2020; 130(5): 2620–29. https://dx.doi.org/10.1172/JCI137244.
26. Zhu Z., Cai T., Fan L. et al. Clinical value of immune-inflammatory parameters to assess the severity of coronavirus disease 2019. Int J Infect Dis. 2020; 95:332–39. https://dx.doi.org/10.1016/j.ijid.2020.04.041
27. Wan S, Yi Q, Fan S, et al. Relationships among lymphocyte subsets, cytokines, and the pulmonary inflammation index in coronavirus (COVID-19) infected patients. Br J Haematol. 2020; 189(3): 428–37. https://dx.doi.org/10.1111/bjh.16659.
28. Popa C., Netea M.G., van Riel P.L.C.M. et al. The role of TNF-α in chronic inflammato-ry conditions, intermediary metabolism, and cardiovascular risk. J. Lipid Res. 2007; 48(4): 751–62. https://dx.doi.org/10.1194/jlr.R600021-JLR200.
29. Долгополов И.С., Менткевич Г.Л., Рыков М.Ю., Чичановская Л.В. Неврологические нарушения у пациентов с long COVID синдромом и методы клеточной терапии для их коррекции: обзор литературы. Сеченовский вестник. 2021; 12(3): 56–67. [Dolgopolov I.S., Mentkevich G.L., Rykov M.Y., Chichanovskaya L.V. Neurological disorders in patients with long COVID syndrome and methods of cell therapy for their correction: literature review. Sechenovskiy vestnik = Bulletin of Sechenov University. 2021; 12(3): 56–67 (In Russ.)]. https://dx.doi.org/10.47093/2218-7332.2021.12.3.56-67. EDN: LDAZRR.
30. Mao L., Jin H., Wang M., et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020; 77(6): 683–90. https://dx.doi.org/10.1001/jamaneurol.2020.1127.
31. Guan W.J., Ni Z.Y., Hu Y. et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020; 382(18): 1708–20. https://dx.doi.org/10.1056/NEJMoa2002032.
32. Carfi A., Bernabei R., Landi F.; Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent symptoms in patients after acute COVID-19. JAMA. 2020; 324(6): 603–5. https://dx.doi.org/10.1001/jama.2020.12603.
33. Nath A. Long-Haul COVID. Neurology. 2020; 95(13): 559–60. https://dx.doi.org/10.1212/WNL.0000000000010640.
34. Blanco-Melo D., Nilsson-Payant B.E., Liu W.-C. et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020; 181(5): 1036–45.e9. https://dx.doi.org/10.1016/j.cell.2020.04.026
35. Beck H., Plate K.H. Angiogenesis after cerebral ischemia. Acta Neuropathol. 2009; 117(5): 481–96. https://dx.doi.org/10.1007/s00401-009-0483-6.
36. Конопля А.И., Ласков В.Б., Шульгинова А.А. Иммунные и оксидантные нарушения у больных с хронической ишемией мозга и их коррекция. Журнал неврологии и психиатрии им. C.C. Корсакова. 2015; 115(11): 28–32. [Konoplya A.I., Laskov V.B., Shulginova A.A. Immune and oxidative disorders in patients with chronic brain ischemia and their correction. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry. 2015; 115(11): 28–32 (In Russ.)]. https://dx.doi.org/10.17116/jnevro201511511128-32. EDN: VHCXBP.
37. Shinohara T., Takahashi N., Okada N. et al. Interleukin-6 as an independent predictor of future cardiovascular events in patients with type-2 diabetes without structural heart disease. J Clin Exp Cardiology. 2012; 3(9): 209. https://dx.doi.org/10.4172/2155-9880.1000209.
38. Danesh J., Kaptoge S., Mann A.G. et al. Long-term interleukin-6 levels and subsequent risk of coronary heart disease: Two new prospective studies and a systematic review. PLoS Med. 2008; 5(4): 78. https://dx.doi.org/10.1371/journal.pmed.0050078.
39. Tehrani D.M., Gardin J.M., Yanez D. et al. Impact of inflammatory biomarkers on relation of high density lipoproteincholesterol with incident coronary heart disease: Cardiovascular health study. Atherosclerosis. 2013; 231(2): 246–51. https://dx.doi.org/10.1016/j.atherosclerosis.2013.08.036.
40. Березовская Г.А., Ганюков В.И., Карпенко М.А. Рестеноз и тромбоз внутри стента: патогенетические механизмы развития и прогностические маркеры. Российский кардиологический журнал. 2012; 17(6): 91–95. [Berezovskaya G. A., Ganyukov V.I., Karpenko M.A. Restenosis and thrombosis inside the stent: pathogenetic mechanisms of development and prognostic markers. Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2012; 17(6): 91–95 (In Russ.)]. https://dx.doi.org/10.15829/1560-4071-2012-6-91-95. EDN: PJOIDF.
41. Naber C.K., Frey U.H., Oldenburg O. et al. Relevance of the NOS3 T-786C and Glu298Asp variants in the endothelial nitric oxide synthase gene for cholinergic and adrenergic coronary vasomotore responses in man. Basic Res Cardiol. 2005; 100(5): 453–60. https://dx.doi.org/10.1007/s00395-005-0530-y.
42. Куба А.А., Никонова Ю.М., Феликсова О.М. с соавт. Ассоциация генетического полиморфизма гена эндотелиальной синтазы оксида азота с сердечно-сосудистой патологией. Современные проблемы науки и образования. 2015; (3): 19. [Kuba A.A., Nikonova N.M., Feliksova O.M. et al. Association of genetic polymorphism of endothelial nitric oxide synthase gene with cardio-vascular pathology. Sovremennye problemy nauki i obrazovaniya = Modern Problems of Science and Education. 2015; (3): 19 (In Russ.)]. EDN: TYSGSJ.
43. Dosenko V.E., Zagoriy V.Y., Haytovich N.V. et al. Allelic polymorphism of endothelial NO-synthase gene and its functional manifestations. Acta Biochim Pol. 2006; 53(2): 299–302.
44. Yaghoubi A.R., Khaki-Khatibi F. T-786C single-nucleotide polymorphism (SNP) of endothelial nitric oxide synthase gene and serum level of vascular endothelial relaxant factor (VERF) in nondiabetic patients with coronary artery disease. African J Biotechnol. 2012; 11(93): 15945–49.
45. Cruz-Gonzalez I., Corra E., Sanchez-Ledesma M. et al. Association between -T786C NOS3 polymorphism and resistant hypertension: A prospective cohort study. BMC Cardiovasc Disord. 2009; 9: 35. https://dx.doi.org/10.1186/1471-2261-9-35.
46. Страмбовская Н.Н., Витковский Ю.А., Смоляков Ю.Н. с соавт. Ишемический инсульт – заболевание с высокой степенью генетической предрасположенности. Забайкальский медицинский вестник. 2019; (1): 91–101. [Strambovskaya N.N., Vitkovsky Yu.A., Smolyakov Yu.N. et al. Ischemic stroke – a disease with a high degree of genetic predisposition. Zabaykal’skiy meditsinskiy vestnik = Transbaikal Medical Bulletin. 2019; (1): 91–101 (In Russ.)]. https://dx.doi.org/10.52485/19986173_2019_1_91. EDN: AXSBMR.
About the Authors
Viktor V. Mashin, MD, professor, head of the Department of neurology, neurosurgery and medical rehabilitation, Ulyanovsk State University. Address: 4321017, Ulyanovsk, 42 L. Tolstogo Str. E-mail: victor_mashin@mail.ru. ORCID: https://orcid.org/0000-0003-0085-3727Dinara R. Dolgova, PhD in Biological Sciences, associate professor of the Department of physiology and pathophysiology, director of Scientific research physicobiological center, Ulyanovsk State University. Address: 4321017, Ulyanovsk, 42 L. Tolstogo Str. E-mail: dolgova.dinara@yandex.ru. ORCID: https://orcid.org/0000-0001-5475-7031
Lyudmila A. Belova, MD, professor, dean of the Faculty of medicine of the Institute of medicine, ecology and physical culture, Ulyanovsk State University. Address: 4321017, Ulyanovsk, 42 L. Tolstogo Str. E-mail: labelova@mail.ru. ORCID: https://orcid.org/0000-0002-9585-5604
Elena Yu. Kotova, PhD in Medical Sciences, associate professor of the Department of neurology, neurosurgery and medical rehabilitation, Ulyanovsk State University. Address: 4321017, Ulyanovsk, 42 L. Tolstogo Str. E-mail: ko-tovatv@mail.ru. ORCID: https://orcid.org/0009-0004-2293-3183
Landysh R. Kruglova, postgraduate student of the Department of neurology, neurosurgery and medical rehabilitation, Ulyanovsk State University. Address: 4321017, Ulyanovsk, 42 L. Tolstogo Str. E-mail: lali.04@bk.ru. ORCID: https://orcid.org/0009-0008-9665-6915
Anastasia P. Statenina, student of the Faculty of medicine named after T.Z. Biktimirov of the Institute of medicine, ecology and physical culture (group LD-O-19/3), Ulyanovsk State University. Address: 4321017, Ulyanovsk, 42 L. Tolstogo Str. E-mail: nastya.statenina@mail.ru
Andrey A. Kozin, student of the Faculty of medicine named after T.Z. Biktimirov of the Institute of medicine, ecology and physical culture (group LD-O-17/6), Ulyanovsk State University. Address: 4321017, Ulyanovsk, 42 L. Tolstogo Str. E-mail: supervaclove@gmail.ru
Rumiya R. Israfilova, student of the Faculty of medicine named after T.Z. Biktimirov of the Institute of medicine, ecology and physical culture (group LD-O-18/9), Ulyanovsk State University. Address: 4321017, Ulyanovsk, 42 L. Tolstogo Str. E-mail: israfilovarr@gmail.ru
Daria K. Martynova, student of the Faculty of medicine named after T.Z. Biktimirov of the Institute of medicine, ecology and physical culture(group LD-O-18/11), Ulyanovsk State University. Address: 4321017, Ulyanovsk, 42 L. Tolstogo Str. E-mail: martynova.daria2000@yandex.ru